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58.059-970, Caixa Postal 5.008, João Pessoa, PB, Brazil
bDepartment of Physics, Yerevan State University,

375025 Yerevan, Armenia

E-mail: emello@fisica.ufpb.br, saharyan@server.physdep.r.am
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the core induced vacuum densities is investigated at large distances from the core, near the

core and for small values of the solid angle corresponding to strong gravitational fields. In

particular, in the latter case we show that the behavior of the vacuum densities is drastically

different for minimally and non-minimally coupled fields. As an application of general

results the flower-pot model for the monopole’s core is considered and the expectation

values inside the core are evaluated.
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1. Introduction

It is well known that different types of topological objects may have been formed in the

early universe after Planck time by the vacuum phase transition [1, 2]. Depending on the

topology of the vacuum manifold these are domain walls, strings, monopoles and textures.

Among them, cosmic strings and monopoles seem to be the best candidate to be observed.

A global monopole is a spherical heavy object formed in the phase transition of a system

composed by a self-coupling Goldstone field, whose original global symmetry is sponta-

neously broken. The matter fields play the role of an order parameter which outside the

monopole’s core acquires a non-vanishing value. The global monopole was first introduced

by Sokolov and Starobinsky [3]. A few years later, the gravitational effects of of the global

monopole were considered in ref. [4], where a solution is presented which describes a global

monopole at large radial distances. The gravitational effects produced by this object may

be approximated by a solid angle deficit in the (3+1)-dimensional spacetime.

The nontrivial properties of the vacuum are among the most important predictions of

quantum field theory. These properties are manifested in the response of the vacuum to

the external electromagnetic and gravitational fields. In particular, the explicit calculations

of the vacuum polarization caused by particular external fields have played an important

role in the development of quantum field theory. The quantum effects due to the point-

like global monopole spacetime on the matter fields have been considered for massless

scalar [5] and fermionic [6] fields, respectively. In order to develop this analysis, the scalar

respectively spinor Green functions in this background have been obtained. The influence
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of the non-zero temperature on these polarization effects has been considered in [7] for

scalar and fermionic fields. Moreover, the calculation of quantum effects on massless scalar

field in a higher dimensional global monopole spacetime has also been developed in [8]. The

combined vacuum polarization effects by the non-trivial geometry of a global monopole and

boundary conditions imposed on the matter fields are investigated as well. In this direction,

the total Casimir energy associated with massive scalar field inside a spherical region in the

global monopole background have been analyzed in refs. [9, 10] by using the zeta function

regularization procedure. Scalar Casimir densities induced by spherical boundaries have

been calculated in [11, 12] to higher dimensional global monopole spacetime by making use

of the generalized Abel-Plana summation formula [13, 14]. More recently, using also this

formalism, a similar analysis for spinor fields with MIT bag boundary conditions has been

developed in [15, 16].

Many of treatments of quantum fields around a global monopole deal mainly with the

case of the idealized point-like monopole geometry. However, the realistic global monopole

has a characteristic core radius determined by the symmetry braking scale at which the

monopole is formed. A simplified model for the monopole core where the region inside

the core is described by the de Sitter geometry is presented in [17]. The vacuum polar-

ization effects due to a massless scalar field in the region outside the core of this model

are investigated in ref. [18]. In particular, it has been shown that long-range effects can

take place due to the non-trivial core structure. In the present paper we will analyze the

effects of global monopole core on properties of the quantum vacuum for the general spher-

ically symmetric static model with a core of finite radius. The most important quantities

characterizing these properties are the vacuum expectation values of the field square and

the energy-momentum tensor. Though the corresponding operators are local, due to the

global nature of the vacuum, the vacuum expectation values describe the global properties

of the bulk and carry an important information about the structure of the defect core.

In addition to describing the physical structure of the quantum field at a given point,

the energy-momentum tensor acts as the source of gravity in the Einstein equations. It

therefore plays an important role in modelling a self-consistent dynamics involving the

gravitational field. As the first step for the investigation of vacuum densities we evaluate

the positive frequency Wightman function for a massive scalar field with general curvature

coupling parameter. This function gives comprehensive insight into vacuum fluctuations

and determines the response of a particle detector of the Unruh-DeWitt type moving in

the global monopole bulk. The problem under consideration is also of separate interest as

an example with gravitational and boundary-induced polarizations of the vacuum, where

all calculations can be performed in a closed form. The corresponding results specify the

conditions under which we can ignore the details of the interior structure and approximate

the effect of the global monopole by the idealized model.

The paper is organized as follows. In section 2 we consider the Wightman function

in the exterior of the global monopole for the general structure of the core assuming that

the components of the metric tensor and their derivatives are continuous at the transition

surface between the core and the exterior. By using this function, in section 3 we investigate

the vacuum expectation values of the field square and the energy-momentum tensor. The
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section 4 is devoted to the generalization of the corresponding results when an additional

surface shell is present on the bounding surface between the core and the exterior. As

an illustration of the general results, in section 5 we consider the flower-pot model with

the Minkowskian geometry inside the core. For this model the vacuum expectation values

inside the core are investigated as well. In section 6 we present our concluding remarks. In

appendix we show that the formulae obtained in the paper for the core induced parts are

also valid in the case when bound states are present.

2. Wightman function

We consider a model of (D + 1)-dimensional global monopole with a core of radius a in

which the spacetime is described by two distinct metric tensors in the regions outside

and inside the core. In the hyperspherical polar coordinates (r, ϑ, φ) ≡ (r, θ1, θ2, . . . θn, φ),

n = D − 2, the corresponding line element in the exterior region r > a has the form

ds2 = dt2 − dr2 − σ2r2dΩ2
D, (2.1)

where dΩ2
D is the line element on the surface of the unit sphere in D-dimensional Eu-

clidean space, the parameter σ is smaller than unity and is related to the symmetry break-

ing energy scale in the theory. The solid angle corresponding to eq. (2.1) is σ2SD with

SD = 2πD/2/Γ(D/2) being the total area of the surface of the unit sphere in D-dimensional

Euclidean space. This leads to the solid angle deficit (1 − σ2)SD in the spacetime given

by line element (2.1). It is of interest to note that the effective metric produced in su-

perfluid 3He − A by a monopole is described by the three dimensional version of the line

element (2.1) with the negative angle deficit, σ > 1, which corresponds to the negative

mass of the topological object [19]. The quasiparticles in this model are chiral and mass-

less fermions. We will assume that inside the core (region r < a) the spacetime geometry

is regular and is described by the general static spherically symmetric line element

ds2 = e2u(r)dt2 − e2v(r)dr2 − e2w(r)dΩ2
D, (2.2)

where the functions u(r), v(r), w(r) are continuous at the core boundary:

u(a) = v(a) = 0, w(a) = ln(σa). (2.3)

Here we assume that there is no surface energy-momentum tensor located at r = a and,

hence, the derivatives of these functions are continuous as well. The generalization to the

case with an infinitely thin spherical shell at the boundary of two metrics will be discussed

in section 4. Note that by introducing the new radial coordinate r̃ = ew(r) with the core

center at r̃ = 0, the angular part of the line element ( 2.2) is written in the standard

Minkowskian form. With this coordinate, in general, we will obtain non-standard angular

part in the exterior line element (2.1). For the metric corresponding to line element (2.2)

the nonzero components of the Ricci tensor are given by expressions (no summation over

i, we adopt the convention of Birrell and Davies [20] for the curvature tensor)

R0
0 = −e−2v

[

u′′ + u′2 − u′v′ + (n + 1)u′w′] ,
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R1
1 = −e−2v

[

u′′ + u′2 − u′v′ + (n + 1)
(

w′′ + w′2 − w′v′
)]

, (2.4)

Ri
i = −e−2v

(

w′′ + w′2 + w′u′ − w′v′ + nw′2) + ne−2w,

where the prime means the derivative with respect to the radial coordinate r and the indices

i = 2, 3, . . . ,D correspond to the coordinates θ1, θ2, . . . , φ respectively. The corresponding

Ricci scalar has the form

R = −2e−2v
[

u′′ + u′2 − u′v′ + n(n + 1)w′2/2

+(n + 1)
(

w′′ + w′2 + w′u′ − w′v′
)]

+ n(n + 1)e−2w. (2.5)

Note that from the regularity of the interior geometry at the core center one has the

conditions u(r), v(r) → 0, and w(r) ∼ ln r̃ for r̃ → 0. In the region outside the core, r > a,

for the nonzero components we have the standard expressions (no summation over i):

Ri
i = n

1 − σ2

σ2r2
, R = n(n + 1)

1 − σ2

σ2r2
, (2.6)

where i = 2, 3, . . . ,D. For n = 0 the spacetime outside the core is flat and coincides with

D = 2 cosmic string geometry. The influence of the non-trivial core structure for the cosmic

string on a quantum scalar field has been considered in refs. [21 – 23]. In the discussion

below we will assume that n > 0.

In this paper we are interested in the vacuum polarization effects for a scalar field

with general curvature coupling parameter ξ propagating in the bulk described above. The

corresponding field equation has the form

(

∇i∇i + m2 + ξR
)

ϕ = 0, (2.7)

where ∇i is the covariant derivative operator associated with line element (2.1) outside

the core and with line element (2.2) inside the core. The values of the curvature coupling

parameter ξ = 0, and ξ = ξD with ξD ≡ (D − 1)/4D correspond to the most important

special cases of minimally and conformally coupled scalar fields, respectively. As a first

stage for the evaluation of the vacuum expectation values (VEVs) for the field square

and the energy-momentum tensor we consider the positive frequency Wightman function

〈0|ϕ(x)ϕ(x′)|0〉, where |0〉 is the amplitude for the corresponding vacuum state. This

function also determines the response of the Unruh-DeWitt type particle detector at a given

state of motion (see, for instance, [20]). By expanding the field operator over eigenfunctions

and using the commutation relations one can see that

〈0|ϕ(x)ϕ(x′)|0〉 =
∑

α

ϕα(x)ϕ∗
α(x′), (2.8)

with {ϕα(x), ϕ∗
α(x′)} being a complete orthonormalized set of positive and negative fre-

quency solutions to the field equation. The collective index α can contain both discrete

and continuous components. In eq. (2.8) it is assumed summation over discrete indices and

integration over continuous indices.
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Due to the symmetry of the problem under consideration the eigenfunctions can be

presented in the form

ϕα(x) = fl(r)Y (mk;ϑ, φ)e−iωt, l = 0, 1, 2, . . . , (2.9)

where mk = (m0 ≡ l,m1, . . . ,mn), and m1,m2, . . . ,mn are integers such that

0 ≤ mn−1 ≤ mn−2 ≤ · · · ≤ m1 ≤ l, −mn−1 ≤ mn ≤ mn−1, (2.10)

and Y (mk;ϑ, φ) is the hyperspherical harmonic of degree l [24]. The equation for the radial

function is obtained from the field equation (2.7) and has the form

f ′′
l (r) +

[

u′ − v′ + (D − 1)w′] f ′
l (r) + e2v

[

e−2uω2 − m2 − ξR − l(l + n)e−2w
]

fl(r) = 0.

(2.11)

In the region r > a described by the line element (2.1), the linearly independent solutions

to this equation are r−n/2Jνl
(λr) and r−n/2Yνl

(λr) with λ =
√

ω2 − m2, where Jνl
(x) and

Yνl
(x) are the Bessel and Neumann functions with the order

νl =
1

σ

[

(

l +
n

2

)2
+ (1 − σ2)n(n + 1) (ξ − ξD−1)

]
1
2

. (2.12)

In the following consideration we will assume that ν2
l is non-negative. This corresponds to

the restriction on the values of the curvature coupling parameter for n > 0, given by the

condition

(1 − σ2)ξ > − nσ2

4(n + 1)
. (2.13)

This condition is satisfied by the minimally coupled field for all values σ and by the confor-

mally coupled field for σ 6 D − 1. The solution of the radial equation (2.11) in the region

r < a regular at the origin we will denote by Rl(r, λ). From eq. (2.11) it follows that near

the core center this solution behaves as r̃l. Note that the parameter λ enters in the radial

equation in the form λ2. As a result the regular solution can be chosen in such a way that

Rl(r,−λ) = const · Rl(r, λ). Now for the radial part of the eigenfunctions one has

fl(r) =

{

Rl(r, λ) for r < a

r−n/2 [AlJνl
(λr) + BlYνl

(λr)] for r > a
, (2.14)

where the coefficients Al and Bl are determined by the conditions of continuity of the

radial function and its derivative at r = a. From these conditions we find the following

expressions for these coefficients

Al =
π

2
an/2Rl(a, λ)Ȳνl

(λa), Bl = −π

2
an/2Rl(a, λ)J̄νl

(λa). (2.15)

Here and in what follows for a cylinder function F (z) we use the notation

F̄ (z) ≡ zF ′(z) −
[

n

2
+ a

R′
l(a, z/a)

Rl(a, z/a)

]

F (z), (2.16)
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where R′
l(a, λ) = ∂Rl(r, λ)/∂r|r=a. Note that due to our choice of the function Rl(r, λ),

the logarithmic derivative in formula (2.16) is an even function on z. Hence, in the region

r > a the radial part of the eigenfunctions has the form

fl(r) =
πan/2

2rn/2
Rl(a, λ)gνl

(λa, λr), (2.17)

where the notation

gνl
(λa, λr) = Jνl

(λr)Ȳνl
(λa) − J̄νl

(λa)Yνl
(λr). (2.18)

is introduced.

For the eigenfunctions we have the following orthonormalization condition
∫

dV
√−gg00ϕα(x)ϕ∗

α′(x) =
δαα′

2ω
, (2.19)

where δαα′ is understood as the Kronecker symbol for discrete indices and as the Dirac delta

function for continuous ones. Substituting eigenfunctions (2.9), and using the relation
∫

dΩ |Y (mk;ϑ, φ)|2 = N(mk) (2.20)

(the explicit form for N(mk) is given in [24] and will not be necessary for the following

consideration in this paper), the normalization condition is written in terms of the radial

eigenfunctions
∫ ∞

r0

dr
√−grg

00fl(r, λ)fl(r, λ
′) =

δ(λ − λ′)

2ωN(mk)
, (2.21)

where r0 is the value of the radial coordinate r corresponding to the origin and gr is the

radial part of the determinant g. Note that in general r0 6= 0 (see, for instance, the special

case of the flower-pot model in section 5). As the integral on the left is divergent for

λ′ = λ, the main contribution in the coincidence limit comes from large values r. By using

the expression (2.17) for the radial part in the region r > a and replacing the Bessel and

Neumann functions by the leading terms of their asymptotic expansions for large values of

the argument, it can be seen that from (2.21) the following result is obtained:

anR2
l (a, λ) =

2σ1−Dλ

π2ωN(mk)
[

J̄2
νl

(λa) + Ȳ 2
νl

(λa)
] . (2.22)

Having the normalized eigenfunctions, now we turn to the evaluation of the Wightman

function by using the mode sum formula (2.8). Substituting eigenfunctions (2.17) and

using the addition formula for the hyperspherical harmonics [24]

∑

mk

Y (mk;ϑ, φ)

N(mk)
Y ∗(mk;ϑ

′, φ′) =
2l + n

nSD
C

n/2
l (cos θ), (2.23)

for the Wightman function in the region outside the monopole’s core one obtains

〈0|ϕ(x)ϕ(x′)|0〉 =
σ1−D

2nSD

∞
∑

l=0

2l + n

(rr′)n/2
C

n/2
l (cos θ)
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×
∫ ∞

0

λdλ√
λ2 + m2

gνl
(λa, λr)gνl

(λa, λr′)

J̄2
νl

(λa) + Ȳ 2
νl

(λa)
ei
√

λ2+m2(t′−t). (2.24)

In formula (2.23), SD = 2πD/2/Γ(D/2) is the total area of the surface of the unit sphere

in D-dimensional space, Cq
p(x) is the Gegenbauer or ultraspherical polynomial of degree

p and order q, and θ is the angle between directions (ϑ, φ) and (ϑ′, φ′). Let us denote

by 〈0m|ϕ(x)ϕ(x′)|0m〉 the positive frequency Wightman function for the geometry of the

idealized point-like global monopole described by the line element (2.1) for all values of the

radial coordinate. This function can be presented in the form [11]

〈0m|ϕ(x)ϕ(x′)|0m〉 =
σ1−D

2nSD

∞
∑

l=0

2l + n

(rr′)n/2
C

n/2
l (cos θ)

×
∫ ∞

0
dλ

λei
√

λ2+m2(t′−t)

√
λ2 + m2

Jνl
(λr)Jνl

(λr′). (2.25)

In order to investigate the part induced by the non-trivial core structure, we consider the

difference

〈ϕ(x)ϕ(x′)〉c = 〈0|ϕ(x)ϕ(x′)|0〉 − 〈0m|ϕ(x)ϕ(x′)|0m〉. (2.26)

Using formulae (2.24), (2.25) and the relation

gν(λa, λr)gν(λa, λr′)

J̄2
ν (λa) + Ȳ 2

ν (λa)
− Jν(λr)Jν(λr′) = −1

2

2
∑

s=1

J̄ν(λa)

H̄
(s)
ν (λa)

H(s)
ν (λr)H(s)

ν (λr′), (2.27)

with H
(s)
ν (x), s = 1, 2 being the Hankel functions, the core induced part in the Wightman

function is presented in the form

〈ϕ(x)ϕ(x′)〉c = −σ1−D

4nSD

∞
∑

l=0

2l + n

(rr′)n/2
C

n/2
l (cos θ)

2
∑

s=1

∫ ∞

0
dλλ

×ei
√

λ2+m2(t′−t)

√
λ2 + m2

J̄νl
(λa)

H̄
(s)
νl

(λa)
H(s)

νl
(λr)H(s)

νl
(λr′). (2.28)

Now we rotate the integration contour in the complex plane λ by the angle π/2 for s = 1

and by the angle −π/2 for s = 2. By using the property that the logarithmic derivative of

the function Rl(r, λ) in formula (2.16) is an even function on z, we can see that the integrals

over the segments (0, im) and (0,−im) of the imaginary axis cancel out. As a result, after

introducing the modified Bessel functions, the core induced part can be presented in the

form

〈ϕ(x)ϕ(x′)〉c = − σ1−D

πnSD

∞
∑

l=0

2l + n

(rr′)n/2
C

n/2
l (cos θ)

∫ ∞

m
dz z

Ĩνl
(za)

K̃νl
(za)

×Kνl
(zr)Kνl

(zr′)√
z2 − m2

cosh
[

√

z2 − m2(t′ − t)
]

. (2.29)

Here and below the tilted notation for the modified Bessel functions is defined as

F̃ (z) ≡ zF ′(z) −Rl(a, z)F (z), (2.30)
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with

Rl(a, z) =
n

2
+ a

R′
l(a, zeπi/2/a)

Rl(a, zeπi/2/a)
. (2.31)

The VEVs in the bulk of the idealized point-like global monopole are well-investigated in

literature (see, for instance, [5]–[12] and references therein) and in the discussion below

we will be mainly concerned with the part induced by the non-trivial core structure. As

we see from (2.29), all information about the inner structure of the global monopole is

contained in the logarithmic derivative of the interior radial function in formula (2.31). In

deriving formula (2.29) we have assumed that there are no bound states for which λ is

purely imaginary. In appendix we show that this formula is also valid in the case when

bound states are present.

3. Vacuum expectation values outside the monopole core

The VEV of the field square is obtained by computing the Wightman function in the co-

incidence limit x′ → x. In this limit expression (2.24) gives a divergent result and some

renormalization procedure is needed. Outside the monopole core the local geometry is the

same as that for a point-like global monopole. Hence, in the region r > a the renormal-

ization procedure for the local characteristics of the vacuum, such as the field square and

the energy-momentum tensor, is the same as for the point-like global monopole geometry.

This procedure is discussed in a number of papers (see [5]–[8]). For the renormalization we

must subtract the corresponding DeWitt-Schwinger expansion involving the terms up to

order D. For a massless field the renormalized value of the field square has the structure

〈ϕ2〉m,ren = [A + B ln(µr)] /rD−1, where the coefficients A and B are functions on the pa-

rameters σ and ξ only and the arbitrary mass scale µ corresponds to the ambiguity in the

renormalization procedure. For a spacetime of odd dimension B = 0 and this ambiguity

is absent. In general, it is not possible to obtain closed expression for the coefficients A

and B. For small values 1 − σ2 approximate expressions are derived in ref. [8] for D = 4

and D = 5. In this paper our main interest are the parts in the VEVs induced by the

non-trivial core structure and below we will concentrate on these quantities.

By using the formula for the Wightman function from the previous section, the VEV

of the field square in the exterior region is presented in the form

〈ϕ2〉ren = 〈ϕ2〉m,ren + 〈ϕ2〉c

Taking into account the relation

C
n/2
l (1) =

Γ(l + n)

Γ(n)l!
, (3.1)

for the part induced by the core we find

〈ϕ2〉c = − σ1−D

πrnSD

∞
∑

l=0

Dl

∫ ∞

m
dz z

Ĩνl
(za)

K̃νl
(za)

K2
νl

(zr)√
z2 − m2

. (3.2)
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Here the factor

Dl = (2l + D − 2)
Γ(l + D − 2)

Γ(D − 1) l!
(3.3)

is the degeneracy of each angular mode with given l. For a fixed l and large z the integrand

contains the exponential factor e2z(a−r) and the integral converges when r > a. For large

values l, introducing a new integration variable y = z/νl in the integral of eq. (3.2) and

using the uniform asymptotic expansions for the modified Bessel functions [25], it can be

seen that the both integral and sum are convergent for r > a and diverge at r = a. For the

points near the sphere the part (3.2) behaves as 1/(r − a)β1 , where β1 is an integer which

depends on the specific model of the core. For this parameter one has β1 6 D − 1. The

exception is the case of the core model for which the leading term in the uniform asymptotic

expansion of the function K̃νl
(za) for large values l vanishes. The latter takes place for

the interior radial function with the asymptotic behavior Rl(a, lz/σ) ∼ −(l/σ)
√

1 + z2 for

large l. For the case of a massless scalar the asymptotic behavior of the part (3.2) at large

distances from the sphere can be obtained by introducing a new integration variable y = zr

and expanding the integrand in terms of a/r. The leading contribution for the summand

with a given l has an order (a/r)2νl+D−1 [assuming that νl 6= 0 and Rl(a, 0) 6= ±νl] and

the main contribution comes from the l = 0 term. Now comparing this with the part

〈ϕ2〉m,ren, we see that for ν0 > 0 the VEV of the field square at large distances from

the core is dominated by the part corresponding to the geometry of the point-like global

monopole. For the case ν0 = 0 the ratio 〈ϕ2〉c/〈ϕ2〉m,ren decays logarithmically and long-

range effects of the monopole core appear similar to those for the geometry of a cosmic

string [21, 22] (see also the discussion in ref. [18] for the model with de Sitter spacetime

inside the core). This case is realized by special values of the parameters satisfying the

condition (1/σ2 − 1)ξ = −ξD−1. For a massive field assuming that mr À 1, the main

contribution into the integral over z in eq. (3.2) comes from the lower limit and to the

leading order one has

〈ϕ2〉c = −
√

πσ1−De−2mr

4rn+1SD
√

mr

∞
∑

l=0

Dl
Ĩνl

(ma)

K̃νl
(ma)

, (3.4)

with the exponentially suppressed VEV.

Consider the limit σ ¿ 1 for a fixed value r. In accordance with eq. (2.6) this cor-

responds to large values of the scalar curvature and, hence, to strong gravitational fields.

To satisfy condition (2.13) we will assume that ξ > 0. For ξ > 0, from eq. (2.12) one has

νl À 1, and after introducing in eq. (3.2) a new integration variable y = z/νl, we can replace

the modified Bessel function by their uniform asymptotic expansions for large values of the

order. The main contribution to the sum over l comes from the summand with l = 0, and

the core induced VEV 〈ϕ2〉c is suppressed by the factor exp
[

−(2/σ)
√

n(n + 1)ξ ln(r/a)
]

.

For ξ = 0 and σ ¿ 1 for the terms with l 6= 0 one has νl À 1 and the corresponding contri-

bution is again exponentially small. For the summand with l = 0 to the leading order over

σ we have νl = n/2 and 〈ϕ2〉c ∼ 1/σD−1. Hence, we conclude that in the limit of strong

gravitational fields the behavior of the VEV 〈ϕ2〉c is completely different for minimally and

non-minimally coupled scalars.
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Now we turn to the investigation of the VEV of the energy-momentum tensor in the

region r > a. Having the Wightman function and the VEV for the field square, these

VEVs are evaluated on the base of the formula

〈0|Tik|0〉 = lim
x′→x

∂i∂
′
k〈0|ϕ(x)ϕ(x′)|0〉 +

[(

ξ − 1

4

)

gik∇l∇l − ξ∇i∇k − ξRik

]

〈0|ϕ2(x)|0〉.
(3.5)

Similar to the Wightman function, the components of the vacuum energy-momentum tensor

can be presented in the decomposed form

〈0|Tik|0〉 = 〈0m|Tik|0m〉 + 〈Tik〉c, (3.6)

where 〈0m|Tik|0m〉 is the vacuum energy-momentum tensor for the geometry of a point-

like global monopole and the part 〈Tik〉c is induced by the core. In accordance with the

problem symmetry both these tensors are diagonal. For massless fields the VEV of the

energy-momentum tensor for the point-like global monopole geometry is investigated in

refs. [5]–[8]. The corresponding renormalized components have the structure similar to

that given for the field square:

〈Tik〉m,ren =
1

rD+1

[

q
(1)
ik + q

(2)
ik ln(µr)

]

, (3.7)

where the coefficients q
(1)
ik , q

(2)
ik depend only on the parameters σ and ξ, and q

(2)
ik = 0 for

D being an even number. Substituting the expressions of the Wightman function and the

VEV of the field square into formula (3.5), for the part of the energy-momentum tensor

induced by the non-trivial core structure one obtains (no summation over i)

〈T k
i 〉c = − σ1−Dδk

i

2πrnSD

∞
∑

l=0

Dl

∫ ∞

m
dz z3 Ĩνl

(za)

K̃νl
(za)

F
(i)
νl

[Kνl
(zr)]√

z2 − m2
, r > a, (3.8)

where for a given function f(y) the notations

F (0)
νl

[f(y)] = (1 − 4ξ)

[

f
′2(y) − n

y
f(y)f ′(y) +

(

ν2
l

y2
− 1 + 4ξ − 2(mr/y)2

1 − 4ξ

)

f2(y)

]

,(3.9)

F (1)
νl

[f(y)] = f
′2(y) +

ξ̃

y
f(y)f ′(y) −

(

1 +
ν2

l + ξ̃n/2

y2

)

f2(y), (3.10)

F (i)
νl

[f(y)] = (4ξ − 1)f
′2(y) − ξ̃

y
f(y)f ′(y) +

[

4ξ − 1 +
ν2

l (1 + ξ̃) + ξ̃n/2

(n + 1)y2

]

f2(y), (3.11)

are introduced with ξ̃ = 4(n + 1)ξ − n and in eq. (3.11) i = 2, 3, . . . ,D. It can be seen

that components (3.8) satisfy the continuity equation ∇k〈T k
i 〉c = 0, which for the geometry

under consideration takes the form

r
d

dr
〈T 1

1 〉c + (D − 1)
(

〈T 1
1 〉c − 〈T 2

2 〉c
)

= 0. (3.12)

The core induced part 〈T k
i 〉c are finite everywhere outside the core, r > a, and diverge

on the core boundary. Near this boundary the main contribution comes from large values
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l and to find the corresponding asymptotic behavior we can use the uniform asymptotic

expansions for the modified Bessel functions. To the leading order one finds 〈T k
i 〉c ∼

1/(r − a)β2 for the energy density and the azimuthal stress and

〈T 1
1 〉c ≈ −D − 1

β2 − 1
(r/a − 1)〈T 2

2 〉c, (3.13)

with β2 6 D + 1. An exception is the special case of the core model for which the

leading term in the uniform asymptotic expansion for the function K̃νl
(za) vanishes. For

large distances from the core boundary, r À a, and for a massless scalar field the main

contribution into the VEV 〈T k
i 〉c comes from the l = 0 summand. Under the assumptions

ν0 6= 0 and R0(a, 0) 6= ±ν0, the leading term of the corresponding asymptotic expansion

behaves like 〈T k
i 〉c ∼ (a/r)2ν0+D+1. For a massive scalar field under the condition mr À 1,

the main contribution into the integral over z in eq. (3.8) comes from the lower limit and

by using the asymptotic formulae for the function Kνl
(zr) for large values of the argument,

to the leading order one finds

〈T 0
0 〉c ≈ −〈T 2

2 〉c ≈ (4ξ − 1)

√
πm3/2e−2mr

4rD−1/2SDσD−1

∞
∑

l=0

Dl
Ĩνl

(ma)

K̃νl
(ma)

, (3.14)

and the radial stress is suppressed by an additional factor 1/mr.

Now let us consider the VEV of the energy-momentum tensor in the limit σ ¿ 1 for a

fixed r > a. For ξ > 0 by the calculations similar to those given above for the field square,

one finds that the core induced VEV are suppressed by the factor

exp
[

−(2/σ)
√

n(n + 1)ξ ln(r/a)
]

and the vacuum stresses are strongly anisotropic: 〈T 1
1 〉c/〈T 2

2 〉c ∼ σ. For a minimally

coupled scalar, ξ = 0, the leading term of the asymptotic expansion over σ comes from the

l = 0 summand in eq. (3.8) with νl = n/2. This term behaves as σ1−D.

4. Core with an infinitely thin shell

The results considered in the previous section can be generalized to the models where an

additional infinitely thin spherical shell located at r = a is present with the surface energy-

momentum tensor τk
i . We denote by ni the normal to the shell normalized by the condition

nin
i = −1, assuming that it points into the bulk on both sides. From the Israel matching

conditions one has

{Kik − Khik} = 8πGτik, (4.1)

where the curly brackets denote summation over each side of the shell, hik = gik + nink

is the induced metric on the shell, Kik = hr
i h

s
k∇rns its extrinsic curvature and K = Ki

i .

For the region r 6 a one has ni = δ1
i e

v(r) and the non-zero components of the extrinsic

curvature are given by the formulae

K0
0 = −u′(r)e−v(r), Kj

i = −δj
i w

′(r)e−v(r), i = 2, 3, . . . , r = a − . (4.2)
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The corresponding expressions for the region r > a are obtained by taking u(r) = v(r) = 0,

w(r) = ln(σr) and changing the signs for the components of the extrinsic curvature tensor.

Now from the matching conditions (4.1) we find (no summation over i)

u′(a−) = 8πG

[

τ i
i −

D − 2

D − 1
τ0
0

]

, i = 2, 3, . . . , (4.3)

w′(a−) =
1

a
+

8πG

D − 1
τ0
0 (4.4)

where f ′(a−) is understood in the sense limr→a−0 f ′(r). The discontinuity of the functions

u′(r) and w′(r) at r = a leads to the delta function term

2
[

u′(a−) + (D − 1)
(

w′(a−) − 1/a
)]

δ(r − a) (4.5)

in the Ricci scalar and, hence, in the equation (2.11) for the radial eigenfunctions. Note

that the expression in the square brackets is related to the surface energy-momentum tensor

by the formula

u′(a−) + (D − 1)
(

w′(a−) − 1/a
)

=
8πG

D − 1
τ, (4.6)

where τ is the trace of the surface energy-momentum tensor.

Due to the delta function term in the equation for the radial eigenfunctions, these

functions have a discontinuity in their slope at r = a. The corresponding jump condition

is obtained by integrating the equation (2.11) through the point r = a:

f ′
l (a+) − f ′

l (a−) =
16πGξ

D − 1
τfl(a). (4.7)

Now the coefficients in the formulae (2.14) for the eigenfunctions are determined by the

continuity condition for the radial eigenfunctions and by the jump condition for their

radial derivative. It can be seen that the corresponding eigenfunctions are given by the

same formulae (2.17) and (2.22) with the new barred notation

F̄ (z) ≡ zF ′(z) −
[

n

2
+

16πGξ

D − 1
aτ + a

R′
l(a, λ)

Rl(a, λ)

]

F (z). (4.8)

Consequently the parts in the Wightman function, in the VEVs of the field square and

the energy-momentum tensor induced by the core of the finite thickness, are given by

formula (2.29), (3.2) and (3.8), where the tilted notation is defined by eq. (2.30) with the

function

Rl(a, z) =
n

2
+

16πGξ

D − 1
aτ + a

R′
l(a, zeπi/2/a)

Rl(a, zeπi/2/a)
. (4.9)

The trace of the surface energy-momentum tensor in this expression is related to the

components of the metric tensor inside the core by formula (4.6).

5. Flower-pot model for global monopole

As an application of the general results given above let us consider a simple example of the

core model assuming that the spacetime inside the core is flat. The corresponding model
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for the cosmic string core was considered in refs. [21 – 23] and following these papers we will

refer to this model as flower-pot model. Taking u(r) = v(r) = 0 from the zero curvature

condition one finds ew(r) = r + const. The value of the constant here is found from the

continuity condition for the function w(r) at the boundary which gives const = (σ − 1)a.

Hence, the interior line element has the form

ds2 = dt2 − dr2 − [r + (σ − 1)a]2 dΩ2
D. (5.1)

In terms of the radial coordinate r the origin is located at r = (1−σ)a. From the matching

conditions (4.3), (4.4) we find the corresponding surface energy-momentum tensor with the

non-zero components

τ0
0 =

(

1

σ
− 1

)

D − 1

8πGa
, τk

i =
D − 2

D − 1
τ0
0 δk

i , i = 2, 3, . . . . (5.2)

The corresponding surface energy density is positive for the global monopole with σ < 1.

After this brief review, let us analyze for this model the influence of the monopole’s core

on the vacuum polarization effects. We will consider the exterior and interior regions

separately.

5.1 Exterior region

In the region inside the core the radial eigenfunctions regular at the origin are the functions:

Rl(r, λ) = Cl

Jl+n/2(λr̃)

r̃n/2
, (5.3)

where r̃ = r + (σ − 1)a is the standard Minkowskian radial coordinate, 0 6 r̃ 6 σa. In

appendix we show that in the flower-pot model no bound states exist. Note that for an

interior Minkowskian observer the radius of the core is σa. The normalization coefficient

Cl is found from the condition (2.22):

C2
l =

2λJ−2
l+n/2(λσa)

π2σωN(mk)
[

J̄2
νl

(λa) + Ȳ 2
νl

(λa)
] , (5.4)

with the barred notation for the cylindrical functions

F̄ (z) ≡ zF ′(z) −
[

ασ + z
J ′

l+n/2(zσ)

Jl+n/2(zσ)

]

F (z) (5.5)

and

ασ =
1

2

(

1 − 1

σ

)

[n − 4ξ(n + 1)] . (5.6)

Note that J̄νl
(λa) = 0 for σ = 1. Hence, the parts in the Wightman function, in the VEVs

of the field square and the energy-momentum tensor due the non-trivial structure of the

core in the flower-pot model, are given by formulae (2.29), (3.2) and (3.8) respectively,

where the tilted notations for the modified Bessel functions are defined by (2.30) with the

coefficient

Rl(a, z) = ασ + z
I ′l+n/2(zσ)

Il+n/2(zσ)
. (5.7)
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Figure 1: The expectation value aD−1〈ϕ2〉c induced by the non-trivial core structure in the region

outside the core for D = 3 massless scalar field as a function of r/a in flower-pot model with σ = 0.5.

The full/dashed curves correspond to minimally/conformally coupled scalars.

For σ = 1 one has Ĩνl
(z) = 0 and as we could expect the VEVs vanish. Using the value

for the standard integral involving the product of the functions Kν given in ref. [26], in the

case of a massless scalar field the leading term for the asymptotic expansion over a/r can

be presented in the form

〈ϕ2〉c ≈ −ν0Γ(2ν0 + 1/2)Γ(ν0 + 1/2)An

22ν0+1(aσ)D−1SDΓ3(ν0 + 1)

(a

r

)2ν0+D−1
, (5.8)

where

An =
nσ − 4ξ(n + 1)(σ − 1) − 2σν0

nσ − 4ξ(n + 1)(σ − 1) + 2σν0
. (5.9)

Note that for a minimally coupled scalar An = 0 and the presented leading term vanishes.

In figure 1 we have plotted the dependence of the part in the VEV of the field square

induced by the core as a function on the rescaled radial coordinate for minimally and

conformally coupled D = 3 massless scalar fields in the flower-pot model with σ = 0.5

Now let us analyze the VEV of the energy-momentum tensor given by eq. (3.8) with

the tilted notation given by (2.30), (5.7). For large distances from the core, r À a, the

main contribution into the VEV of the energy-momentum tensor for a massless scalar field

comes from the l = 0 summand. Under the assumption ν0 6= 0 the leading terms of the

asymptotic expansions have the form (no summation over i)

〈T k
i 〉c ≈ − 2−2ν0σ1−DAnδk

i

πν0SDΓ2(ν0)aD+1

(a

r

)2ν0+D+1
∫ ∞

0
dzz2ν0+2F (i)

ν0
[Kν0(z)]. (5.10)

The integrals in this formula can be evaluated using the value for the integrals involving

the product of the functions Kν given in ref. [26]. As we see, for ν0 > 0 and for large

distances from the sphere the vacuum energy-momentum tensor is dominated by the part

corresponding to the point-like monopole.
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Figure 2: The expectation value of the energy density, aD+1〈T 0
0 〉c induced in the region outside

the core for D = 3 massless scalar field as a function of r/a in flower-pot model with σ = 0.5. The

full/dashed curves correspond to minimally/conformally coupled scalars.

As it has been mentioned above on the core surface the VEVs diverge. For the region

near the core the main contribution comes from large values of l. By using the uniform

asymptotic expansions for the modified Bessel functions it can be seen that to the leading

order 〈ϕ2〉c ∼ (r − a)2−D and the components of the vacuum energy-momentum tensor

behave as (r − a)−D for the energy density and the azimuthal stress and as (r − a)1−D

for the radial stress. Due to surface divergencies near the surface the total vacuum energy-

momentum tensor is dominated by the parts induced by the finite thickness of the core. As

an illustration, in figure 2 we have presented the dependence of the core-induced vacuum

energy density as a function on the radial coordinate for D = 3 minimally and conformally

coupled massless scalar fields in the flower-pot model with σ = 0.5.

5.2 Interior region

Now let us consider the vacuum polarization effects inside the core for the flower-pot model.

The corresponding eigenfunctions have the form given by eq. (2.9) with fl(r) = Rl(r, λ)

and the function Rl(r, λ) is defined by formula (5.3). Substituting the eigenfunctions into

the mode sum formula for the corresponding Wightman function one finds

〈0|ϕ(x)ϕ(x′)|0〉 =
2

π2nσSD

∞
∑

l=0

2l + n

(r̃r̃′)n/2
C

n/2
l (cos θ)

×
∫ ∞

0
dλ

λJ−2
l+n/2(λσa)
√

λ2 + m2

Jl+n/2(λr̃)Jl+n/2(λr̃′)

J̄2
νl

(λa) + Ȳ 2
νl

(λa)
ei
√

λ2+m2(t′−t).(5.11)

To find the renormalized VEVs of the field square and the energy-momentum tensor we

need to evaluate the difference between this function and the corresponding function for

the Minkowski bulk:

〈ϕ(x)ϕ(x′)〉sub = 〈0|ϕ(x)ϕ(x′)|0〉 − 〈0M |ϕ(x)ϕ(x′)|0M 〉. (5.12)
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The appropriate form for the Minkowskian part is obtained from eq. (2.25) taking σ = 1

and replacing r → r̃. By using the corresponding formula, for the subtracted Wightman

function one finds

〈ϕ(x)ϕ(x′)〉sub =
2

π2nSD

∞
∑

l=0

2l + n

(r̃r̃′)n/2
C

n/2
l (cos θ)

∫ ∞

0
dλ

λei
√

λ2+m2(t′−t)

√
λ2 + m2

×Jl+n/2(λr̃)Jl+n/2(λr̃′)

[

J−2
l+n/2(λσa)/σ

J̄2
νl

(λa) + Ȳ 2
νl

(λa)
− π2

4

]

, (5.13)

where the barred notation is defined by eq. (5.5). The integral in this formula is slowly

convergent and the integrand is highly oscillatory. In order to transform the expression for

the subtracted Wightman function into more convenient form, we note that the following

identity takes place

1

2

∑

s=1,2

C{H(s)
l+n/2(σz), Jνl

(z)}
Jl+n/2(σz)J̄νl

(z)
= 1, (5.14)

where we have introduced the notation

C {f(σz), g(z)} = zf(σz)g′(z) −
[

ασf(σz) + zf ′(σz)
]

g(z). (5.15)

Note that in terms of this notation one has

Jl+n/2(σz)F̄ (z) = C{Jl+n/2(σz), F (z)}. (5.16)

We add the left-hand side of eq. (5.14) with z = λa as a coefficient to the term π2/4 in

the square brackets of eq. (5.13). After this replacement the term in the square brackets

is written in the form

J−2
l+n/2

(σz)/σ

J̄2
νl

(z) + Ȳ 2
νl

(z)
− π2

4
=

∑

s=1,2

1

2C{Jl+n/2(σz), Jνl
(z)}

×
[

1/σ

C{Jl+n/2(σz),H
(s)
νl

(z)}
− π2

4
C{H(s)

l+n/2(σz), Jνl
(z)}

]

.(5.17)

Note that both terms in the sum over s on the right of this relation are separately regular at

the zeros of the function C{Jl+n/2(σλa), Jνl
(λa)}. Substituting (5.17) into formula (5.13)

we rotate the integration contour in the complex plane λ by the angle π/2 for s = 1 and by

the angle −π/2 for s = 2. Under the condition r̃ + r̃′ + |t− t′| < 2σa the contribution from

the semicircle with the radius tending to infinity vanishes. Note that as we consider the

points inside the core this condition is satisfied in the coincidence limit. The integrals over

the segments (0, im) and (0,−im) of the imaginary axis cancel out and after introducing

the modified Bessel functions the subtracted Wightman function can be presented in the

form

〈ϕ(x)ϕ(x′)〉sub = − 1

πnSD

∞
∑

l=0

2l + n

(r̃r̃′)n/2
C

n/2
l (cos θ)

∫ ∞

m
dz

zUl(σ, za)√
z2 − m2

– 16 –



J
H
E
P
1
0
(
2
0
0
6
)
0
4
9

×Il+n/2(zr̃)Il+n/2(zr̃′) cosh
[

√

z2 − m2(t′ − t)
]

, (5.18)

with the notation

Ul(σ, z) =
1/σ + C{Il+n/2(σz),Kνl

(z)}C{Kl+n/2(σz), Iνl
(z)}

C{Il+n/2(σz), Iνl
(z)}C{Il+n/2(σz),Kνl

(z)} . (5.19)

For points away from the core boundary the integral is exponentially convergent in the

coincidence limit and this formula is convenient for the calculation of the VEVs of the field

square and the energy-momentum tensor.

Having the subtracted Wightman function we can evaluate the renormalized VEV of

the field square by taking the coincidence limit of the arguments in eq. (5.18):

〈ϕ2〉ren = − 1

πSDr̃n

∞
∑

l=0

Dl

∫ ∞

m
dz

zUl(σ, za)√
z2 − m2

I2
l+n/2(zr̃). (5.20)

So, by this result we can see that although the spacetime inside the core is Minkowski one,

there exists a vacuum polarization induced by the non-trivial topology of the spacetime in

the exterior region. In the limit r → 0 the main contribution into eq. (5.20) comes from

the l = 0 summand with the leading term

〈ϕ2〉ren ≈ − 21−D

πD/2+1Γ(D/2)

∫ ∞

m
dz zD−1 U0(σ, za)√

z2 − m2
, (5.21)

and at the monopole center the renormalized VEV of the field square acquires a non-

vanishing regular contribution. For the points on the core surface the VEV given by

eq. (5.20) diverges like 1/(a−r)D−2. Now let us consider the limiting case σ ¿ 1 under the

fixed value σa which is the core radius for an internal Minkowskian observer. Introducing in

eq. (5.20) a new integration variable y = σaz and by making use of the uniform asymptotic

expansions for the modified Bessel functions with the index νl, we can see that to the

leading order

〈ϕ2〉ren ≈ − 1

πSDr̃n

∞
∑

l=0

Dl

∫ ∞

m
dz

zUl+n/2(zσa)√
z2 − m2

I2
l+n/2(zr̃)

I2
l+n/2(zσa)

, (5.22)

where we have introduced the notation

Uν(y) =
2
√

η1 + y2

η1 + y2 − [η2 + yI ′ν(y)/Iν(y)]2
− Iν(y)Kν(y), (5.23)

with

η1 = l (l + n) + n(n + 1)ξ, η2 = 2ξ(n + 1) − n/2. (5.24)

Hence, in the limit σ → 0 for a fixed radius of the core, σa, the part in the renormalized

VEV of the field square inside the core tends to the finite limiting value. For large values

of the mass, assuming that m(σa− r̃) À 1, it can be seen that 〈ϕ2〉ren is suppressed by the

factor e−2m(σa−r̃). In figure 3 we have plotted the renormalized VEV 〈ϕ2〉ren inside the core

of the flower-pot model with σ = 0.5 as a function of r̃/σa for minimally and conformally
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Figure 3: The expectation value aD−1〈ϕ2〉ren inside the core for D = 3 massless scalar field as

a function of r̃/σa in the flower-pot model with σ = 0.5. The full/dashed curves correspond to

minimally/conformally coupled scalars.

coupled massless scalars. Again we can observe that there exists a strong dependence of

this quantity on the curvature coupling parameter.

The renormalized VEV of the energy-momentum tensor is found by using the for-

mula (3.5) with the subtracted Wightman functions. This leads to the following formula

(no summation over i)

〈T k
i 〉ren = − δk

i

2πSDr̃n

∞
∑

l=0

Dl

∫ ∞

m
dz

z3Ul(σ, za)√
z2 − m2

F
(i)
l+n/2[Il+n/2(zr̃)], (5.25)

where the functions F
(i)
l+n/2[f(y)] are defined by relations (3.9)-(3.11) with the replacement

νl → l + n/2. At the core center the nonzero contribution to VEV (5.25) comes from the

summands with l = 0 and l = 1 and one has

〈T 0
0 〉ren =

1

2DπD/2+1Γ(D/2)

∫ ∞

m

zD+1dz√
z2 − m2

×
[(

4ξ + 1 − 2
m2

z2

)

U0(σ, za) + (4ξ − 1)U1(σ, za)

]

, (5.26)

〈T 1
1 〉ren = 〈T 2

2 〉ren =
1

2DπD/2+1DΓ(D/2)

∫ ∞

m

zD+1dz√
z2 − m2

×
[(

ξ̃ − 2
)

U0(σ, za) + ξ̃U1(σ, za)
]

, (5.27)

Note that for the conformally coupled massless scalar at the center one has 〈T 0
0 〉ren =

−D〈T 1
1 〉ren. This can also be obtained directly from the zero trace condition. Near the

core surface the components of the vacuum energy-momentum tensor behave as (a− r)−D

for the energy density and the azimuthal stress and as (a− r)1−D for the radial stress. As

in the case of the field square, in the limit σ → 0 for a fixed radius of the core radius σa,

the part in the vacuum energy-momentum tensor induced by the non-trivial core tends to

– 18 –



J
H
E
P
1
0
(
2
0
0
6
)
0
4
9

0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

Figure 4: The renormalized energy density, aD+1〈T 0
0 〉ren inside the core for D = 3 massless scalar

field as a function of r̃/σa in the flower-pot model with σ = 0.5. The full/dashed curves correspond

to minimally/conformally coupled scalars.

the finite limiting value. This limiting value is obtained from formula (5.25) by making the

replacement Ul(σ, za) → Ul+n/2(zσa)/I2
l+n/2(zσa). As in the case of the field square, for

large values of the mass for the field quanta the VEV 〈T k
i 〉ren is exponentially suppressed by

the factor e−2m(σa−r̃). The dependence of the renormalized interior vacuum energy density

on the radial coordinate is presented in figure 4 for minimally and conformally coupled

massless scalar field in D = 3 for the geometry of a global monopole with σ = 0.5.

6. Conclusion

In the present paper we have considered the one-loop vacuum effects for a massive scalar

field with general curvature coupling parameter on background of the (D + 1)-dimensional

global monopole with non-trivial core structure. The previous papers on the investigation

of the vacuum polarization by the gravitational field of the global monopole are concerned

with the idealized point-like model, where the curvature has singularity at the origin. The

exception is the ref. [18], where the vacuum densities for a massless scalar field are studied

outside the monopole core with the interior de Sitter geometry. Here we consider the general

spherically symmetric static model of the core with finite thickness, described by the line

element (2.2), and investigate the vacuum properties in both exterior and interior regions.

Among the most important characteristics of these properties, which carry an information

about the core structure, are the VEVs for the field square and the energy-momentum

tensor. In order to obtain these expectation values we first construct the positive frequency

Wightman function. In the region outside the core this function is presented as a sum of

two distinct contributions. The first one corresponds to the Wightman function for the

geometry of a point-like global monopole and the second one is induced by the non-trivial

structure of the monopole’s core. The latter is given by formula (2.29), where the tilted

notation is defined by formula (2.30) with the coefficient from (2.31) for the model without
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an infinitely thin spherical shell on the boundary of the core. This coefficient is determined

by the radial part of the interior eigenfunctions and describes the influence of the core

properties on the vacuum characteristics in the exterior region. In the case of the core

model with a thin shell on the boundary the derivatives of the metric tensor components

are discontinuous on the core surface. This leads to the delta function type contribution

to the Ricci scalar and, hence to the equation for the radial eigenfunctions in the case

of the non-minimally coupled scalar field. As a result, the radial eigenfunctions have a

discontinuity in their slope at the core boundary. This leads to an additional term in the

coefficient of the tilted notation which is proportional to the trace of the surface energy-

momentum tensor (see eq.( 4.9)).

By using the formula for the Wightman function, in section 3 we have investigated the

influence of the non-trivial core structure on the VEVs of the field square and the energy-

momentum tensor. As in the exterior region the local geometry is the same as that in

the point-like global monopole model, the presence of the core does not lead to additional

divergences for the points outside the core. As a result, the parts in these VEVs induced

by the core are directly obtained from the corresponding part of the Wightman function

for the case of the field square and by applying on this function a certain second-order

differential operator and taking the coincidence limit for the energy-momentum tensor.

These parts are given by formulae (3.2) and (3.8) for the field square and the energy-

momentum tensor respectively. They diverge as the boundary of the core is approached.

The surface divergences in the VEVs of the local observables are well-known in quantum

field theory with boundaries and are investigated for various boundary geometries. We have

investigated the asymptotic behavior of the core induced VEVs near the core boundary and

at large distances from the core. In particular, at large distances and for a massless scalar

field with ν0 > 0, the ratio of the core induced and the point-like monopole parts decay

as (r/a)2ν0 for the both field square and the energy-momentum tensor. For the special

case with ν0 = 0 this ratio decays logarithmically and long-range effects of the monopole’s

core appear. In the limit of strong gravitational fields corresponding to small values of the

parameter σ, the behavior of the core induced parts is completely different for minimally

and non-minimally coupled fields. The corresponding VEVs are suppressed by the factor

exp[−(2/σ)
√

n(n + 1)ξ ln(a/r)] for the non-minimally coupled scalar and behave like σ1−D

for the minimally coupled field.

As an example of the application of the general results, in section 5 we have considered

a simple core model with a flat spacetime inside the core, so called flower-pot model. The

corresponding surface energy-momentum tensor on the boundary of the core is obtained

from the matching conditions and has the form given by eq. (5.2). The core induced parts

of the exterior VEVs in this model are obtained from the general results by taking the

function in the coefficient of the tilted notation form eq. (5.7). For the flower-pot model

we have also investigated the vacuum densities inside the core. Though the spacetime

geometry inside the core is Monkowskian, the non-trivial topology of the exterior region

induces vacuum polarization effects in this region as well. In order to find the corresponding

renormalized VEVs of the field square and the energy-momentum tensor we have derived

a closed formula, eq. (5.18), for the difference of the interior Wightman function and the
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Wightman function for the Minkowski spacetime. The subtracted function is finite in

the coincidence limit and can be directly used for the evaluation of the VEVs of the field

square and the energy-momentum tensor. The latter quantities are given by formulae (5.20)

and (5.25). As in the case of the exterior region, we have considered various limiting cases

when the general formulae are simplified. In particular, we have shown that in the limit

σ ¿ 1 under the fixed value σa, which is the core radius for an internal Minkowskian

observer, the renormalized VEVs of the field square and the energy-momentum tensor

tend to finite limiting values.
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A. Contribution of bound states

In this appendix we consider the contribution of possible bound states into the VEVs.

For this states the quantity λ is purely imaginary, λ = iη, and the corresponding radial

eigenfunction in the region r > a is the function Ablr
−n/2Kνl

(ηr) with the normalization

coefficient Abl. To have a stable ground state we will assume that η < m. From the

continuity of the eigenfunctions at r = a one has

Rl(a, iη) = Abla
−n/2Kνl

(ηa), (A.1)

and from the continuity of the radial derivative we see that the possible bound states are

solutions of the equation

K̃νl
(ηa) = 0, (A.2)

with the notation from (2.30). The normalization condition for the bound states is as

follows:
∫ a

r0

dr e−u+v+(D−1)wR2
l (r, iη) + Ablσ

D−1

∫ ∞

a
dr rK2

νl
(ηr) =

1

2ωN(mk)
, (A.3)

from which the normalization constant can be found. In order to evaluate the integrals

in this formula we note that for the solution fωl(r) to radial equation (2.11) the following

formula takes place

∫

dr e−u+v+(D−1)wfωl(r)fω1l(r) =
e−u+v+(D−1)w

ω2
1 − ω2

[

f ′
ωl(r)fω1l(r) − fωl(r)f

′
ω1l(r)

]

. (A.4)

In particular, in the limit ω1 → ω one finds

∫

dr e−u+v+(D−1)wf2
ωl(r) =

e−u+v+(D−1)w

2ω

[

f ′
ωl(r)

∂

∂ω
fωl(r) − fωl(r)

∂

∂ω
f ′

ωl(r)

]

. (A.5)
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Applying to the integrals in eq. (A.3) this formula and using the continuity of the radial

eigenfunctions at r = a, for the normalization coefficient one finds

A2
bl = − ησ1−D Ĩνl

(ηa)

ωN(mk)(∂/∂η)K̃νl
(ηa)

. (A.6)

To obtain this formula we have used the relation

Kνl
(ηa) = 1/Ĩνl

(ηa), (A.7)

valid for the solutions of eq. (A.2). As a result, for the contribution of the bound state

with λ = iη to the Wightman function we have the formula

〈ϕ(x)ϕ(x′)〉bs = −σ1−D

nSD

∞
∑

l=0

2l + n

(rr′)n/2
C

n/2
l (cos θ)

× ηĨνl
(ηa)

(∂/∂η)K̃νl
(ηa)

ei(t′−t)
√

m2−η2

√

m2 − η2
Kνl

(ηr)Kνl
(ηr′). (A.8)

In the case when several bound states are present the sum of their separate contributions

should be taken. Now the Wightman function is the sum of the part coming from the

modes with real λ given by eq. (2.28) and of the part coming from the bound states given

by eq. (A.8). In order to transform the first part we again rotate the integration contour in

eq. (2.28) by the angle π/2 for s = 1 and by the angle −π/2 for s = 2. But now we should

take into account that the integrand has poles at λ = ±iη which are zeroes of the functions

H̄
(s)
νl

(λa) in accordance with eq. (A.2). Rotating the integration contour we will assume

that the pole (−1)siη, s = 1, 2, on the imaginary axis is avoided by the semicircle C
(s)
ρ in

the right half plane with small radius ρ and with the center at this pole. The integration

over these semicircles will give an additional contribution

−σ1−D

4nSD

∞
∑

l=0

2l + n

(rr′)n/2
C

n/2
l (cos θ)

2
∑

s=1

∫

C
(s)
ρ

dλλ
ei
√

λ2+m2(t′−t)

√
λ2 + m2

J̄νl
(λa)

H̄
(s)
νl

(λa)
H(s)

νl
(λr)H(s)

νl
(λr′).

(A.9)

By evaluating the integrals in this formula it can be seen that this term exactly cancels the

contribution (A.8) coming from the corresponding bound state (for the similar cancellation

in the Casimir effect with Robin boundary condition see ref. [27]). Hence, we conclude that

the formulae given above for the core induced parts in the VEVs are valid in the case of

the presence of bound states as well.

In order to see the possibility for the appearance of bound states in the flower-pot

model, we note that introducing a function Fl(r) = r
(D−1)/2
∗ fl(r) with r∗ = r outside the

core and r∗ = r̃ inside the core, equation (2.11) for the radial part of the eigenfunctions

is written in the form of the Schrodinger equation. The corresponding effective potential

is equal [ν2
l + (n − 1)/4]/σ2r2 in the exterior region and [l(l + n) + (n2 − 1)/4]/r̃2 in the

interior region. Under the conditions ν2
l > 0 and n > 0 assumed earlier, the potential is

non-negative and, hence, in the flower-pot model no bound states exist.
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